Asymptotic theory for statistics of the Poisson-Voronoi approximation

نویسنده

  • CHRISTOPH THÄLE
چکیده

This paper establishes expectation and variance asymptotics for statistics of the Poisson-Voronoi approximation of general sets, as the underlying intensity of the Poisson point process tends to infinity. Statistics of interest include volume, surface area, Hausdorff measure, and the number of faces of lower-dimensional skeletons. We also consider the complexity of the so-called Voronoi zone and the iterated Voronoi approximation. Our results are consequences of general limit theorems proved with an abstract Steiner-type formula applicable in the setting of sums of stabilizing functionals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clt S for Poisson Hyperplane Tessellations

We derive a central limit theorem for the number of vertices of convex polytopes induced by stationary Poisson hyperplane processes in R d. This result generalizes an earlier one proved by Paroux [Adv. for intersection points of motion-invariant Poisson line processes in R 2. Our proof is based on Hoeffd-ing's decomposition of U-statistics which seems to be more efficient and adequate to tackle...

متن کامل

Asymptotic Behaviors of the Lorenz Curve for Left Truncated and Dependent Data

The purpose of this paper is to provide some asymptotic results for nonparametric estimator of the Lorenz curve and Lorenz process for the case in which data are assumed to be strong mixing subject to random left truncation. First, we show that nonparametric estimator of the Lorenz curve is uniformly strongly consistent for the associated Lorenz curve. Also, a strong Gaussian approximation for ...

متن کامل

Heuristic theory for many-faced d-dimensional Poisson-Voronoi cells

We consider the d-dimensional Poisson-Voronoi tessellation and investigate the applicability of heuristic methods developed recently for two dimensions. Let pn(d) be the probability that a cell have n neighbors (be ‘n-faced’) and mn(d) the average facedness of a cell adjacent to an n-faced cell. We obtain the leading order terms of the asymptotic large-n expansions for pn(d) and mn(3). It appea...

متن کامل

Some Asymptotic Results of Kernel Density Estimator in Length-Biased Sampling

In this paper, we prove the strong uniform consistency and asymptotic normality of the kernel density estimator proposed by Jones [12] for length-biased data.The approach is based on the invariance principle for the empirical processes proved by Horváth [10]. All simulations are drawn for different cases to demonstrate both, consistency and asymptotic normality and the method is illustrated by ...

متن کامل

Asymptotic Statistics of the N-sided Planar Poisson-voronoi Cell: Ii. Heuristics

We develop a set of heuristic arguments to explain several results on planar Poisson-Voronoi tessellations that were derived earlier at the cost of considerable mathematical effort. The results concern Voronoi cells having a large number n of sides. The arguments start from an entropy balance applied to the arrangement of n neighbors around a central cell. It is followed by a simplified evaluat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015